Показать меню

Электронная лампа

Электронная лампа, радиолампа — электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами.

Радиолампы массово использовались в XX веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т. п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках и в высококлассной аудиотехнике.

Электронные лампы, предназначенные для освещения (лампы-вспышки, ксеноновые лампы, ртутные и натриевые лампы), радиолампами не называются и обычно относятся к классу осветительных приборов.

Электронно-лучевые приборы основаны на тех же принципах, что и радиолампы, но, помимо управления интенсивностью электронного потока, также управляют распределением электронов в пространстве и потому выделяются в отдельную группу. Также отдельно выделяют СВЧ электровакуумные приборы с использованием резонансных явлений в электронном потоке (такие как магнетрон).

Принцип действия

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом (+) и катодом (-) электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газоразрядные электронные лампы

Основным для этого класса устройств является поток ионов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться разрядом в разреженном газе за счёт напряжённости электрического поля. Как правило, такие лампы используются либо в низкочастотных генераторах (тиратроны), либо в схемах управляемых выпрямителей, часто с высокими выходными токами (игнитрон).

Типы газоразрядных электронных ламп:

  • неоновая лампа
  • стабилитрон
  • ионный разрядник
  • тиратрон
  • игнитрон

Неоновая лампа

Неоновая лампа — газосветный прибор тлеющего разряда, состоящая из стеклянного баллона, в котором располагаются два электрода (катод и анод). Баллон наполнен инертным газом (неоном) при небольшом давлении. Электроды изготавливаются из неактивированного металла, например никеля, и могут быть различной формы (два цилиндрических, два плоских и др.)

Неоновые лампы излучают оранжево-красное свечение небольшой интенсивности и используются в частности как сигнальные. Неоновую лампу необходимо включать с ограничительным сопротивлением, иначе разряд сразу переходит в дуговой и лампа выходит из строя.

Стабилитрон

Газоразрядный стабилитрон представляет собой стеклянный баллон, в котором находятся два электрода — катод и анод. Катод имеет форму цилиндра с большой поверхностью, анод — стержень, расположенный вдоль оси катода. Внутренняя поверхность катода активируется. Баллон наполняется аргоном, неоном или смесью газов при давлении в несколько десятков миллиметров ртутного столба. Благодаря большой поверхности катода, напряжение между электродами при значительных изменениях тока остается неизменным.

Параметрами стабилитрона являются: напряжение зажигания, напряжение горения, минимальный и максимальный ток. Величина напряжения стабилизации зависит от вида газа и материала катода, которым наполнен баллон.

Стабилитрон с коронным разрядом

Кроме стабилитронов с тлеющим разрядом, описанных выше, существуют стабилитроны с коронным разрядом. Устройство данных стабилитронов схоже со стабилитронами тлеющего разряда. Баллон наполняется водородом при низком давлении. Стабилитроны с коронным разрядом имеют в несколько раз более высокие значения напряжения горения, и позволяют стабилизировать напряжение порядка 300—1000 В и более. Однако ток, проходящий через такой стабилитрон в сотни раз меньше чем у стабилитронов с тлеющим разрядом.

Микроэлектронные приборы с автоэмиссионным катодом

Процесс миниатюризации электронных вакуумных ламп привел к отказу от подогреваемых катодов и переходу на автоэлектронную эмиссию с холодных катодов специальной формы из специально подобранных материалов. Это дает возможность довести размеры устройств до микронных размеров и использовать при их изготовлении стандартные техпроцессы полупроводниковой индустрии. В настоящее время такие конструкции активно исследуются.

История

Первая советская радиолампа. Экспозиция Музея нижегородской радиолаборатории

В 1883 году Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени — считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал.

Благодаря этим экспериментам Эдисон стал автором фундаментального научного открытия, которое является основой работы всех электронных ламп и всей электроники до создания полупроводниковых приборов. Впоследствии это явление получило название термоэлектронная эмиссия.

В 1905 году этот «эффект Эдисона» стал основой британского патента Джона Флеминга на «прибор для преобразования переменного тока в постоянный» — первую электронную лампу, открывшую век электроники.

В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку (и, таким образом, создал триод). Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор. В 1921 году А. А. Чернышёвым предложена конструкция цилиндрического подогревного катода (катода косвенного накала).

Вакуумные электронные лампы стали элементной базой компьютеров первого поколения. Главным недостатком электронных ламп было то, что устройства на их основе были довольно громоздкими, а при большом количестве ламп, например, в первых ЭВМ, частые единичные выгорания приводили к значительному простою на ремонт. Причем в логических схемах не всегда можно было вовремя обнаружить поломку, машина могла продолжать работать выдавая ошибочные результаты. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода (именно он испускает электроны, необходимые для тока в лампе), а образованное ими тепло отводить. Например, в первых компьютерах использовались тысячи ламп, которые размещались в металлических шкафах и занимали много места. Весила такая машина десятки тонн. Для её работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы в связи с выделением лампами огромного количества тепла.

Пик расцвета («золотая эра») ламповой схемотехники пришёлся на 1935—1950 годы.

Конструкция

Электронные лампы имеют два и более электродов: катод, анод и сетки.

Катод

Для того, чтобы обеспечить эмиссию электронов с катода, его дополнительно подогревают, откуда произошло жаргонное название катода — «накал» лампы.

Каждый материал характеризуется своим максимальным значением тока эмиссии с единицы площади катода и рабочей температурой. Соответственно, чем больший ток должен протекать через лампу, тем больше должен быть катод, и тем большая мощность затрачивается на его нагрев.

По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

Катоды прямого накала

Катод прямого накала представляет собой нить из металла с высоким удельным электрическим сопротивлением. Ток накала проходит непосредственно через катод. Лампы прямого накала часто называют «батарейными», так как они широко применяются в аппаратуре с автономным питанием, но прямонакальный катод применяется и в мощных генераторных лампах. Там он представляет собой не нить, а достаточно толстый стержень.

Преимущества:

  • потребляют меньшую мощность;
  • быстрее разогреваются;
  • отсутствует проблема электрической изоляции между цепями катода и накала (эта проблема существенна в высоковольтных кенотронах).

Недостатки:

  • при использовании в сигнальных цепях требуют питания накала постоянным током от дорогих химических источников тока или выпрямителей с хорошими фильтрами, чтобы избежать появления фона переменного тока. При накале переменным током наблюдается изменение эмиссии в такт с током из-за того, что маленький и лёгкий катод быстро остывает;
  • в ряде схем неприменимы из-за влияния падения напряжения вдоль катода на работу лампы.

Катоды косвенного накала

Катод косвенного накала представляет собой цилиндр, внутри которого располагают подогреватель (нить накала), электрически изолированный от катода. Для нейтрализации магнитного поля подогревателя его свивают в спираль. Подавляющее большинство ламп малой и средней мощности для стационарной аппаратуры имеют катод косвенного накала.

Преимущества:

  • площадь катода может быть достаточно велика, при этом геометрические размеры катода не влияют на напряжение и ток накала,
  • катод изолирован от источника питания подогревателя, что снимает некоторые схемотехнические ограничения, присущие лампам прямого накала;
  • питать подогреватель в большинстве случаев можно переменным током, потому что сравнительно массивный катод хорошо сглаживает колебания температуры и эмиссии.

Недостатки:

  • подогреватель приходится раскалять гораздо сильнее, чем прямонакальный катод, поэтому он потребляет большую мощность;
  • требует заметного времени для прогрева (десятки секунд и минуты);
  • изолирующий слой на нити накала имеет некоторую паразитную проводимость к катоду, по которой в чувствительные каскады проникает фон.

По типу материала катоды подразделяются на вольфрамовые, оксидные и плёночные.

Вольфрамовые катоды

Вольфрамовый катод всегда является катодом прямого накала. В пределах рабочей температуры вольфрама (от 2200 °C) эффективность вольфрамового катода составляет 2—10 мА/Вт, удельная эмиссия — 300—700 мА/см2, срок службы — до 1000 ч. Вольфрамовые катоды применяются в мощных генераторных лампах, работающих при высоких напряжениях на аноде (свыше 5 кВ), так как другие типы катодов при таких высоких напряжениях быстро разрушаются. В очень мощных лампах разборной конструкции катоды могут быть заменяемыми.

Плёночные катоды

С целью уменьшить работу выхода электрона из вольфрама, на поверхность его наносят плёнку другого металла. Это называется активацией, а катоды такого типа называют активированными. К плёночным катодам относятся бариевые, торированные и карбидированные катоды.

Например, торирование (поверх карбидирования) приводит к уменьшению рабочей температуры катода до 1700 °C (жёлтое каление). Активированные катоды выходят из строя не только из-за перегорания нити, но и из-за разрушения активирующего покрытия (которое особенно быстро протекает при перекале), как говорят, «теряют эмиссию», что проявляется в снижении анодного тока и крутизны анодно-сеточной характеристики лампы.

Оксидные катоды

При изготовлении катода на металлическое основание (из никеля, вольфрама или спецсплавов), называемое керном, наносят катодное покрытие, состоящее из соединений бария, стронция и кальция (их оксидов). Катод накаливается в вакууме, в результате чего изменяется структура оксидного слоя, и на поверхности образуется одноатомная плёнка бария, восстановленная из оксида. Поверхность катода получается пористой, и атомы бария располагаются на ней не сплошным слоем, а в виде отдельных областей, являющихся активными точками эмиссии. Наличие запаса ионов бария внутри оксидного слоя обеспечивают долговечность активирующего покрытия. Распределение бария по поверхности катода зависит от режима обработки, поэтому значение параметров у оксидных катодов могут колебаться в некоторых пределах. Особенностью оксидного катода является зависимость эмиссионного тока от электрического поля в лампе. То есть, чем больше напряжённость электрического поля возле катода, тем больше эмиссия электронов с его поверхности. Если у нагретого катода ток эмиссии не отбирается, то на поверхности катода накапливается большое количество атомов бария, которые поступают изнутри катода вследствие диффузии. При этом работа выхода резко понижается и в течение очень короткого промежутка времени (до 10 мксек) с катода можно получить эмиссионный ток с плотностью до 50 А/см2. При длительном отборе тока поверхность катода обедняется барием, работа выхода увеличивается, а эмиссионная способность катода понижается до нормальной величины. После прекращения отбора тока атомы бария снова накапливаются на поверхности катода.

Рабочая температура оксидного катода составляет 800 °C (вишнёво-красное каление), срок службы — 5000 ч и более.

Анод

Изготавливается обычно из никеля или молибдена, иногда из тантала и графита. Выполняется иногда в форме пластины, но чаще в форме коробочки, окружающей катод и сетки и имеющей форму цилиндра или параллелепипеда.

Для отвода тепла, в которое превращается кинетическая энергия электронов, ударяющихся о катод, анод чернят (увеличение лучеиспускания), увеличивают его поверхность рёбрами и «крылышками», мощные лампы имеют водяное охлаждение анодов.

Сетка

Между катодом и анодом располагаются сетки, которые служат для управления потоком электронов и устранения побочных явлений, возникающих при движении электронов от катода к аноду.

Сетка представляет собой решётку либо (чаще) спираль из тонкой проволоки, навитую вокруг катода на нескольких поддерживающих стойках (траверсах). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

По назначению сетки подразделяются на следующие виды:

  • Управляющая сетка — небольшое изменение разности потенциалов между управляющей сеткой и катодом приводит к большим изменениям анодного тока лампы, что позволяет усиливать сигнал. Располагается на минимально возможном расстоянии от катода. Но если по каким-либо причинам это не удавалось, то её покрывали золотом для уменьшения термоэмиссии, так как она под нагревом начинала испускать электроны.
  • Экранирующая сетка — устраняет паразитную ёмкость между управляющей сеткой и анодом, что позволяет увеличить коэффициент усиления и предотвратить самовозбуждение на высоких частотах. На экранирующую сетку подаётся постоянное напряжение, равное или несколько меньшее анодного. При случайном размыкании цепи анода через экранирующую сетку может потечь ток значительной силы, что приведёт к повреждению лампы. Для предотвращения этого явления последовательно с экранирующей сеткой включают резистор сопротивлением в несколько килоом;
  • Антидинатронная сетка — устраняет динатронный эффект, возникающий при ускорении электронов полем экранирующей сетки. Антидинатронную сетку соединяют с катодом лампы, иногда такое соединение сделано внутри баллона лампы.

В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода.

Баллон

Корпус (баллон) электронной лампы чаще всего бывает выполнен из стекла, реже из металла. Высокочастотные лампы выполняются в композитных баллонах из металла и специальной керамики, поскольку стекло имеет большие диэлектрические потери, из-за которых разогревается в СВЧ-полях.

Блестящее напыление (геттер), которое можно видеть на стекле большинства электронных ламп, является абсорбером остаточных газов, а также индикатором вакуума (многие виды геттера белеют при попадании воздуха в лампу в случае нарушения её герметичности).

Металлические электроды (токовводы), проходящие через стеклянный корпус лампы, должны быть согласованы по коэффициенту теплового расширения с данной маркой стекла и хорошо смачиваться расплавленным стеклом. Их выполняют из платины (редко), платинита, молибдена и др.

Основные типы

Основные типы электронных вакуумных ламп:

  • Диоды (легко делаются на большие напряжения, см. кенотрон)
  • Триоды
  • Тетроды
  • Пентоды и Лучевые тетроды
  • Лучевые пентоды (как разновидность этого типа)
  • Гексоды
  • Гептоды (пентагриды, пятисеточные)
  • Октоды
  • Ноноды
  • Комбинированные лампы (фактически включают 2 или более ламп в одном баллоне)
  • Лампы со вторичной эмиссией и спецлампы с особыми характеристиками (квадратичной, гиперболической) — создавались для аналоговых ЭВМ, но не получили широкого распространения.

Современные применения

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны, клистроны, лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
  • Магнетрон можно встретить не только в радаре, но и в микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы, отличавшиеся малыми размерами и большой механической прочностью.

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Звукотехническая аппаратура

Электронные лампы до сих пор находят применение в звукотехнике, как любительской, так и профессиональной. Конструирование ламповых звукотехнических устройств является одним из направлений современного радиолюбительского движения.

Благодаря специфическим особенностям искажения (т. н. «теплое ламповое звучание»), которые до настоящего времени не удалось полностью воспроизвести в широкой практике при использовании полупроводниковых аналогов или цифровой эмуляции, электронные лампы весьма популярны в усилении звучания электрогитары.

Классификация по названию

Маркировки, принятые в СССР/России

Маркировки в других странах

В Европе в 1930-е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки.

Первая буква характеризует напряжение накала или его ток:

  • А — напряжение накала 4 В;
  • В — ток накала 180 мА;
  • С — ток накала 200 мА;
  • D — напряжение накала до 1,4 В;
  • E — напряжение накала 6,3 В;
  • F — напряжение накала 12,6 В;
  • G — напряжение накала 5 В;
  • H — ток накала 150 мА;
  • К — напряжение накала 2 В;
  • P — ток накала 300 мА;
  • U — ток накала 100 мА;
  • V — ток накала 50 мА;
  • X — ток накала 600 мА.

Вторая и последующие буквы в обозначении определяют тип ламп:

  • A — диоды;
  • B — двойные диоды (с общим катодом);
  • C — триоды (кроме выходных);
  • D — выходные триоды;
  • E — тетроды (кроме выходных);
  • F — пентоды (кроме выходных);
  • L — выходные пентоды и тетроды;
  • H — гексоды или гептоды (гексодного типа);
  • K — октоды или гептоды (октодного типа);
  • M — электронно-световые индикаторы настройки;
  • P — усилительные лампы со вторичной эмиссией;
  • Y — однополупериодные кенотроны (простые);
  • Z — двухполупериодные кенотроны.

Двузначное или трёхзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

  • 1-9 — стеклянные лампы с ламельным цоколем («красная серия»);
  • 1х — лампы с восьмиштырьковым цоколем («11-серия»);
  • 3х — лампы в стеклянном баллоне с октальным цоколем;
  • 5х — лампы с октальным цоколем;
  • 6х и 7х — стеклянные сверхминиатюрные лампы;
  • 8х и от 180 до 189 — стеклянные миниатюрные с девятиштырьковой ножкой;
  • 9х — стеклянные миниатюрные с семиштырьковой ножкой.

Газоразрядные лампы

В газоразрядных лампах обычно используется тлеющий или дуговой разряд в инертных газах или в парах ртути. Такие лампы чаще называют поэтому газоразрядными или ионными (по типу проводимости) приборами. Для очень больших параметров по току и напряжению прибор заполняется жидким диэлектриком (трансформаторным маслом), такие системы называются тригатронами, они способны выдерживать напряжения порядка мегавольт и коммутировать токи порядка сотен килоампер. Проведение в ионных приборах инициируется либо прямым током через прибор — в стабилитронах, либо подачей управляющего напряжения на сетку/сетки, либо воздействием на газ в приборе ультрафиолетовым или лазерным излучением.

Примеры газоразрядных электронных ламп:

  • Газоразрядные стабилитроны
  • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т. п.)
  • Тиратроны (трёхэлектродные лампы — газоразрядные триоды, четырёхэлектродные — газоразрядные тетроды)
  • Крайтроны
  • Счётчики Гейгера — Мюллера
  • Ксеноновые, неоновые лампы и другие газоразрядные источники света.
  • Игнитрон
  • Тригатрон
Еще по этой теме:
Катодные лучи
01:32, 12 декабрь
Катодные лучи
Катодные лучи, также называемые «электронными пучками» — поток электронов, излучаемый катодом вакуумной трубки. История В 1854 году начались эксперименты с высоким напряжением в разрежённом
Ксеноновая лампа-вспышка
00:26, 06 декабрь
Ксеноновая лампа-вспышка
Импульсная лампа — электрическая газоразрядная лампа, предназначенная для генерации мощных, некогерентных краткосрочных импульсов света, цветовая температура которого близка к солнечному свету.
Лампы ДНаТ для тепличных растений
09:27, 01 сентябрь
Лампы ДНаТ для тепличных растений
Погодные условия регионов нашей страны, к сожалению, не позволяют выращивать растения на земельных участках круглый год. На выручку приходят теплицы, которые способствуют росту большинства овощей,
Настольные светильники
14:51, 13 ноябрь
Настольные светильники
В жилых помещениях и офисах широко применяется мобильная светотехника. Актуальность настольных ламп связана с простотой и удобством их использования, практичностью.
Виды осветительных приборов
23:09, 24 август
Виды осветительных приборов
Светильники – нацеливающие или рассеивающие свет, созданный осветительными лампами, устройства. Они могут быть уличными или предназначенными для помещений. Устройство светильников может быть очень
Как эффективно почистить люстру
14:49, 26 февраль
Как эффективно почистить люстру
Чистка осветительных приборов является делом чрезвычайно важным. В отличие от другой техники, люстры и лампы даже при малых загрязнениях существенно снижают свою эффективность.
Комментарии:
Добавить комментарий
Ваше Имя:
Ваш E-Mail: