Показать меню

Биморфизм

04.12.2020
174

Биморфизм — морфизм категории, являющийся мономорфизмом и эпиморфизмом одновременно, то есть морфизм, на который можно сокращать как слева, так и справа, теоретико-категорное обобщение понятия биективного отображения.

Понятие биморфизма самодвойственно. Композиция биморфизмов является биморфизмом, таким образом, для данной категории C {displaystyle {mathcal {C}}} определена подкатегория B i m C ⊆ C {displaystyle mathrm {Bim} _{mathcal {C}}subseteq {mathcal {C}}} , состоящая из тех же объектов, и содержащая лишь морфизмы, являющиеся биморфизмами.

Любой изоморфизм является биморфизмом, но не любой биморфизм есть изоморфизм. Например, вложение кольца целых чисел в поле рациональных чисел σ : Z → Q {displaystyle sigma :mathbb {Z} o mathbb {Q} } в категории ассоциативных колец является биморфизмом, при этом необратимым, то есть, изоморфизмом не являющимся. Если биморфизм σ {displaystyle sigma } представлен в виде σ = τ ∘ υ {displaystyle sigma = au circ upsilon } , то τ {displaystyle au } — мономорфизм, а υ {displaystyle upsilon } — эпиморфизм.

Сбалансированная категория — категория, в которой каждый биморфизм является изоморфизмом, таковы, например, категория множеств и категория групп. Категория колец, категория топологических пространств, категория абелевых групп без кручения — несбалансированные.

Еще по этой теме:
Матрица Коши (линейная алгебра)
14:45, 04 декабрь
Матрица Коши (линейная алгебра)
В математике матрица Коши (названа в честь Огюстена Луи Коши) — это матрица размера m × n с элементами вида a i j
Максимальный тор
12:52, 03 декабрь
Максимальный тор
Максимальный тор связной вещественной группы Ли G {displaystyle G} — связная компактная коммутативная подгруппа Ли T
Касание
00:23, 03 декабрь
Касание
Касание — свойство двух линий или линии и поверхности иметь в некоторой точке общую касательную прямую или свойство двух поверхностей иметь в некоторой точке общую касательную плоскость. Точка в
Кольцо Крулля
10:57, 02 декабрь
Кольцо Крулля
Кольцо Крулля — коммутативное кольцо с относительно хорошими свойствами разложения на простые. Впервые были исследованы Вольфгангом Круллем в 1931 году. Кольца Крулля являются многомерным обобщением
Категория множеств
10:38, 02 декабрь
Категория множеств
Категория множеств — категория, объекты которой — множества, а морфизмы между множествами A и B — все функции из A в B. Обозначается Set. В аксиоматике Цермело — Френкеля «множества всех множеств» не
Обратный элемент
23:38, 01 декабрь
Обратный элемент
Обратный элемент — термин в общей алгебре, обобщающий понятия обратного числа (для умножения) и противоположного числа (для сложения). Определения Пусть ( M
Комментарии:
Добавить комментарий
Ваше Имя:
Ваш E-Mail: